登陆注册
34274300000017

第17章 物理大发现(10)

卡门1881年5月11日生于匈牙利,父亲是教育学教授,他受到了良好的早期教育。儿童时代的卡门,很早就显露出数学天赋。卡门的数学天赋着实使父亲感到惊奇,但是卡门的父亲从全面教育出发,不得不采取措施,抑制他在数学方面的智力发展,让他多学些人文科学知识。

9岁那年,卡门进入了被人们誉为“明星摇篮”的匈牙利明达中学。17岁的卡门,作为一名中学优等生,进入了当时匈牙利惟一的工科大学约瑟夫皇家工艺大学。25岁的卡门争取到了匈牙利科学院的奖学金后,便前往当时世界的科学圣地——哥廷根。

20世纪初,哥廷根的人口不足3万,然而,这是一座智力之城、学院之城,哥廷根在近代科学文明中颇有名望。古老的建筑,迷人的花园,幽静的街巷,一派静悄悄地庄严气氛,世纪的墙垣环抱着郁郁葱葱的林阴,哥廷根大学哥特式建筑的尖形塔,更使这里具有中世纪修道院的风格。

哥廷根大学是1734年创建的一所古老的普鲁士大学,当时是世界理论科学的中心。哥廷根也是近代流体力学的发祥地,被誉为“空气动力学之父”的路德维希·普朗特此时正在这里主持工作。

普朗特十分注意研究从复杂的工程问题中抽出基本的物理过程,再用简化的数学方法加以分析,这与卡门的想法十分吻合。

在普朗特的指导下,卡门利用哥廷根良好的实验条件,对一系列机械工程问题进行了研究。

这为他日后的飞机结构设计,提供了重要的技术保障。

1903年,卡门通过了博士学位答辩,而后赴巴黎学习考察。不久,普朗特从哥廷根寄邀请信,要卡门回去担任实验室的助手,参加哥廷根第一个风洞的筹建及“齐柏林号”飞艇的设计。卡门愉快地接受了这一邀请,从此他开始了作为航空科学家的生涯。

哥廷根风洞是为“齐柏林号”飞艇设计服务的;卡门协助普朗特完成了德国第一批空气动力学实验。同时,他还担任力学课的教员。哥廷根的学习、研究和生活对于卡门说来是十分珍贵的。

当时,一批科学明星荟萃于哥廷根。卡门置身于这些科学大师之中,眼界大开。尤其是希尔伯特与克莱因这两位各有所长的数学大师,对卡门产生了深远影响,使卡门横跨两个基本学科——纯粹数学和应用数学。

卡门投入科学研究初期,正是物理学的革命时期。放射性的发现正在揭开原子奥秘的帷幕。

1911年到1921年间,普朗特正在研究边界层分离现象。他设计了一个水槽,用以观察流体经过圆柱体后面的分离现象。水槽里的水流不断发生摆动,普朗特对此并不注意。卡门思想敏捷,善于洞察事物本质,当他插手这一实验之后,立即加以深入研究。

实验显示,流水在圆柱后形成两排交叉的涡旋。卡门对此进行了数学分析,从理论上证明只有交叉排列的涡旋才是稳定的。他在三个星期内完成了两篇出色的论文,这两篇论文成为流体力学中一次重大发现的标志。

流体经过一个障碍物,会在它后面留下两排交叉的涡旋,这一现象早已为人们所知,但是,卡门第一次从理论角度阐明了这一现象的实质。由于这两排交叉的涡旋好像是大街两旁的两排街灯,于是人们把这一现象叫做“卡门过街”。

在人类的建筑史上,因忽视“卡门过街”的作用,曾发生过一起惊心动魄的事件。事情是这样的:在美国西雅图附近有一座横跨塔科马海峡的大桥,它是一位著名建筑师设计的“艺术杰作”。1940年11月7日,8级狂风大作,在强烈的“卡门过街”的作用下,大桥发生了急剧的扭曲、振动,结果在不到一个小时崩塌殆尽。人们最终意识到建筑设计必须考虑“卡门过街”的效应,因为一切建筑物都处于空气这一流体之中,风速过快时都会产生“卡门过街”

现象。

卡门离开哥廷根前往亚琛任教时,已经奠定了他的基本流体力学理论权威的基础。不久,他担任亚琛工学院空气动力研究所所长。他在亚琛工作期间,组织并主持了三次国际应用力学会议。卡门和他的老师普朗特合作研究,突破了如今仍被人们视为流体力学最大难题的“湍流”问题,虽然这个问题至今仍困扰着人类,但“湍流”问题的研究在这一时期获得了第一次重大进展。卡门和普朗特的湍流理论,现在仍是工程湍流计算中的重要依据,成为流体力学的经典理论。

1929年卡门出任加州理工学院航空实验室主任时,美国的航空工业正处于蓬勃发展阶段。从1930年到1942年,经过12年的努力,卡门领导的加州理工学院航空实验室,已经成为国际流体力学研究中心。卡门在整个流体力学领域,指导了两代科学家和工程师,开拓了新领域,为航空技术奠定了扎实的科学基础。

1945年,卡门起草了一份关于航空工业发展必须依靠科学技术的报告。报告分析了两次世界大战中的人力、武器、科学技术的作用,还具体探讨了超音速飞行和火箭的技术问题,这篇报告对美国当局产生了非常深刻的影响。

在卡门的倡导、呼吁下,美国逐步成立了一些研究机构。1947年超音速无人驾驶飞机发展中心成立;1948年著名的智囊机构——兰德公司成立;1952年阿诺德航空工程公司成立;1957年成立了国家原子能委员会。到1957年,卡门的计划大多已付诸实施,火箭、导弹已经大量生产,超音速飞机横越大洋,人造卫星也已经围绕着地球运行。

第二次世界大战战火熄灭之后,卡门全心地致力于发展国际航空事业。50年代,卡门主持了两次国际航空会议,创建了国际宇航科学协会,成立了国际宇航科学院,推动了国际宇航事业的发展。

当时十分脆弱的中国航空事业也得益于卡门的指点。1929年,卡门路经中国,建议在清华大学开设航空课程。抗战爆发后,清华大学创办航空系,卡门派他的弟子、航空技术专家沃登道夫来华担任该系的科学顾问。

卡门在加州理工学院时期,还培养了一批出色的中国科学家,他们之中有众人熟知的钱学森、郭永怀、钱伟长,以及美籍华人林家翘等。其中钱学森在30年代末期火箭技术还处于摸索阶段就与其他几位年轻科学家看到了这一技术的发展远景,成立了一个名叫“火箭俱乐部”

的研究小组。这一小组后来发展为加州理工学院喷气推进实验室,成为全世界火箭喷气技术的一大中心。

卡门在漫长的科学生涯中,对流体力学、空气动力学,尤其是以此为基础的航空技术贡献卓著。他不仅是宇航工业技术的研制者,更是国际航天事业的组织者,他同时涉足理论和应用科学两大领域。直到70岁时,卡门还集中精力研究一门他所生疏的学科——燃烧学,他把燃烧化学与流体力学结合起来,奠定了现代燃烧理论的基础。

泡利不相容原理的发现

1900年4月25日,伏尔夫岗·泡利(1900~1958)生于奥地利首都维也纳。

他的父亲做过医生,是一个有名的学者,后来担任维也纳大学胶体化学教授。泡利出生后接受过天主教的洗礼,教父是物理学家和哲学评论家厄恩斯特·马赫,因此泡利自幼就受到了良好的科学环境的熏陶。他在念小学时,学习成绩始终名列前茅。上中学后,课堂教学已经满足不了他的需要,他广泛阅读课外书籍,尤其喜欢自然科学。

中学快毕业时他得知,爱因斯坦发表了广义相对论,这在当时是一门崭新的学科,是物理学的前沿。他对此表现了极大兴趣,甚至在课堂上也在偷偷地阅读。他那时已掌握了高等数学,所以读过爱因斯坦的著作后,他感到眼中的翳障突然消失,一下子对广义相对论能够心领神会了。

中学毕业后,泡利决定攻读理论物理学。他进了慕尼黑大学,跟随良师益友索末菲。索氏当时在德国以至世界上都可以算得上一位最有声望的理论物理学导师,许多杰出的科学家,包括海森堡、贝蒂在内都出自他的门下。

在这里,泡利在索末菲教授的指导下,他的理论分析技术更臻成熟,他的非凡才华得以显露。在为《数学百科全书》撰写相对论综述之前,尽管泡利当时还不到20岁,可是已经发表过好几篇相对论的论文了,因此深得索末菲的赏识。

1921年,泡利以论文《论氢分子的模型》取得博士学位,从慕尼黑大学毕业。他的论文被认为是对于玻尔-索末菲量子理论应用问题的卓有见地的文章。

1922年,泡利离开慕尼黑大学,来到哥廷根大学——当时由玻恩和弗兰克领导的世界理论物理研究中心,担当玻恩的助手。在此期间,他结识了尼尔斯·玻尔。一学期后,他接受了玻尔的邀请,来到了哥本哈根理论物理研究所工作。这里自由的学术空气和讨论方式,加之名师的指导,使泡利学到了科学的思维方法,锻炼了纯熟的数学技巧,弥补了他不擅长实验、动手能力不足的弱点。此后不久,他又去了汉堡大学担任编外讲师。

从1923年到1928年这5年中,泡利一边进行教学工作,一边开始从事量子物理学的研究。他专攻的首要课题就是反常塞曼效应。反常塞曼现象深深地迷住了他,在他的宿舍里,桌子上、床上到处都是演算的草稿,窗台上老是放着未吃完的面包,他从早到晚不上运动场,也不去音乐厅,总是写啊,算啊,可是却一直没有头绪,因此他总是整天愁眉苦脸的。

当然,泡利没有把反常塞曼效应的问题完全解决。事实上,当时波动力学还没有发展起来,要想完全解决这个问题也是不可能的。但是,他把塞曼效应的研究用来正确地解释光谱线的精细结构,这是电子所具有的一种在经典力学中找不到的新性质。为了解释这种精细结构,泡利用一个新的只能取两个值的量子数来描述电子,这个新量子数就是电子自旋的投影,他后来因此发现了电子自旋。这个新量子数的存在和泡利所做的解释都得到了证实。

新量子数的发现为泡利最重要和最著名的发现做了准备。1925年,这方面的研究终于使他发现了自然界的一条基本规律——泡利不相容原理。在泡利提出这个原理之前,朗德、索末菲和玻尔等人都相信碱金属原子中被价电子围绕的那部分组成,具有角动量,这角动量是磁反常的原因。至于这部分组成为什么具有角动量和磁矩,则谁也说不出道理。

泡利不相容原理认为:一个原子中不能有两个或更多的电子处在完全相同的量子状态。应用这个原理可以很好地解释原子内部的电子分布状况,从而把由玻尔的原子理论不能圆满解释的元素周期表的分布规律说得一清二楚。这个重要发现使泡利在20年后,即1945年,获得了诺贝尔物理学奖。

从1928年起,他担任了慕尼黑联邦工业大学的理论物理学教授,他在这里一直工作到去世。

近30年的时间里,他一直坚持不懈地刻苦钻研,他以自己非凡的智慧,凭借科学的预想和不断创新的精神攀登着一个又一个的科学高峰。

20世纪20年代物理学家们发现:在原子核放出电子的β衰变过程中,放射出来的电子所携带的能量,并不和原子核所损失的质量相对应。经测定,放出电子所带走的总能量要小一些,也就是说,在β衰变过程中有能量“亏损”的现象。

那么,这一部分亏损的能量到哪里去了呢?大家都知道,能量是不能创造也不能消灭的,只能由一种形式转化为另一种形式。面对这种情况,人们犹豫、彷徨。1930年,玻尔甚至准备放弃能量守恒原理,因为他认为,能量守恒在微观粒子作用过程中不一定成立,这样就可以解释β衰变中的能量亏损现象了。

玻尔是泡利的良师益友,两人之间有着深厚的友情。可是泡利并未因此而放弃自己的观点,他不相信在自然界中惟独β衰变过程违反守恒定律。为了“挽救”能量守恒原理,找到能量亏损的真实原因,他思索着,钻研着……终于,在1931年他大胆地提出了自己的科学假想——他假设存在一种新的粒子,它伴随β粒子从核中发射出来,但此种粒子质量很微小,不超过电子质量的万分之一,不带电,稳定,由此满足每次β衰变事件中能量守恒。并且为了使β衰变中自旋守恒,他还假设这种粒子的自旋为1/2。1932年,费米把这种粒子称为“中微子”,意思就是“微小的中性小家伙”。

泡利的中微子假说提出以后,令人信服地说明了β衰变中失踪能量的去向,圆满地解决了这个矛盾。然而由于中微子没有电荷也没有质量,就像个“幽灵”般神秘莫测,许多物理学家忧虑地认为,这不过是泡利为了维护能量守恒定律,使能量在数值上达到平衡而想像出的不切实际的幻影。

在巨大的压力面前,泡利没有屈服,仍以科学的态度严肃认真地进行着科学研究。经过漫长的25年后,1956年,美国洛斯·阿拉莫斯科学实验室终于第一次直接观测到中微子,证实了中微子的确是存在的。泡利比此前许多伟大的科学家幸运得多,他终于亲眼看到了自己的科学假说变成了现实,他欣慰地笑了。

泡利在量子力学、量子场论和基本粒子理论方面的卓越贡献,特别是他的不相容原理和β衰变中的中微子假说等,在理论物理学的发展史册上谱写了辉煌的一页。他的名字与相对论、量子力学和量子场论紧紧地联系在一起,人们称赞他为“当之无愧的理论物理学家”、“理论物理学的心脏”。

作为一个理论物理学家,泡利的最后一项重要工作是研究场论中的各种分立对称性,他证明了每个洛仑兹不变拉格朗日场论,在CTP(电荷共轭、时间反演、宇称)操作下是不变的,而C、T和P不必分别是对称的。不久之后泡利就发现,在弱相互作用中,例如在β衰变中,对称是不守恒的,即P单独是不守恒的,这一发现使他激动万分。

正当他在科学的高峰上奋力攀登的时候,却不幸患了重病,1958年12月14日在瑞士苏黎世逝世,享年58岁。

同类推荐
  • 我和我的野生动物朋友1

    我和我的野生动物朋友1

    广袤的北美大森林、神秘的北极圈、寥廓无垠的天空、充满未知的海底,到处都有动物们的踪影。翻开这本书,你将领略充满英雄气概的野生动物群像,跟着小北极熊一起感受寒冷的极夜,和洄游的鲑鱼一起经历河流和大海中的万般凶险……
  • 小猪弗莱迪(弗莱迪与双胞胎)

    小猪弗莱迪(弗莱迪与双胞胎)

    《小猪弗莱迪》系列童话故事书每册都是一个精彩独立的故事。或是迷案重重、悬疑跌宕的侦探故事,或是意外横生、步步惊心的冒险故事;或是斗智斗勇、充满惊险的间谍之战;或是想像奇特、笑料十足的太空旅行……
  • 侦探PK零淘汰

    侦探PK零淘汰

    《温暖熊·侦探PK零淘汰》主要是讲在成长的过程中给我们带来温暖的那些人和事。青春是一段痛并快乐着的旅程,在这段旅程中我们能找到温暖的朋友,能发展出一份温暖的友谊,正是这些温暖陪伴着我们,给我们勇气和信心,陪伴我们走出这段迷惘的青春旅程。在《爱上机器人女生》中,给大家带来很多温暖的是一个体温冰冷的机器人,地震来临时她奋不顾身地帮助大家逃生,她带给我们大家温暖,相信她的心中一定也被温暖填充着。在《侦探PK零淘汰》中,铃铛给大家带来的是一段温暖的友谊。男生侦探团和女生侦探团通过破案,来较量,来进行友情连谊。男生和女生之间创造出一种独特的友谊模式,这种和谐融洽的友谊才是最温暖的。
  • 柿子披风(大白鲸原创幻想儿童文学优秀作品)

    柿子披风(大白鲸原创幻想儿童文学优秀作品)

    在乡村,麻雀随时都会遭遇弹弓的攻击,麻雀妈妈想尽各种办法来保护自己的孩子,先是搬家,后是为小麻雀木曦缝制柿子披风。木曦在妈妈的保护下幸福地成长着……在柿子树上,木曦遇到了由城市工厂制造并放飞到乡村捕食树木害虫的机器麻雀橙柿。因为自卑,橙柿千方百计隐瞒自己的出身,还因嫉妒害死了木曦的妈妈。两只麻雀的友情遇到了考验……
  • 诙谐幽默(中华美德)

    诙谐幽默(中华美德)

    幽默大师契诃夫说:“不懂得开玩笑的人是没有希望的人!这样的人即使额高7寸,聪明绝顶,也算不上真正的智慧。”俄罗斯还有一句谚语是这样讲的:“语言不是蜜,但能粘住一切。”幽默是一种才华,一种智慧,一种力量,它是人类面对共同的生活困境而创造出来的一种文明。它以愉悦的方式表达人的真诚、大方和心灵的善良,它使生活充满了激情。正像老舍说的那样:“幽默者的心是热的。”那些短小精湛的幽默故事,有时短得仅仅只有一两句话,却能让说的人成为众人注目的焦点;能让陷入僵局的谈判起死回生;能让原本十分沉闷的气氛变得轻松活泼;能让一直对你若即若离的情人,在一种欢快情绪的感染下怦然心动。
热门推荐
  • 傻王爷的废材王妃

    傻王爷的废材王妃

    在生活中,我们总想爱情如果没有你的离开,会不会就很美好呢?嘻嘻,且看女主怎么虐待我们这些单身狗吧。
  • 狮子星的少女

    狮子星的少女

    她为狮子座出身,父母是长跑冠军,被人称为“狮子夫妇”。她就这样被这样的光环下出身了。可是,她只能被父母掌控在手上,一复一日的去跑步,跑步...“我只能是狮子星座上,最没有理想,最暗淡的一颗。”泪痕扶过她已苍白的脸颊,什么是目标,什么是追求?她能冲破迷茫吗?
  • 学生最新超长记忆法

    学生最新超长记忆法

    系统记忆法要求人们把需要记忆的内容的关系层次弄清,尽可能地以更大的整体模块。结合以前已经知道的内容,组合成有机单元来记忆;把要记的多个事物串联起来,其中每个事物都像锁链上的一个环,环环相连,这样的记忆方法称为“连锁记忆法”;选择记忆法是归纳最实用的材料输入大脑,并编码储存,以使记忆效果更加突出;规律记忆法是找出事物之间的联系和规律。从而有助于记忆效果;形象联想记忆法是在很短的时间内把所见所闻的事物形象化;分类归纳法是先找到事物的共同点,然后归类。条理清晰地记忆。读者可以根据自己的记忆特点选择适合的方法。这必将收到良好的效果。
  • 混沌宇宙第一系统

    混沌宇宙第一系统

    第三混沌宇宙史官:苏三大人,能否说说您成功的秘诀?苏三:秘诀就是-笑口常开,好彩自然来!【大海啊!你全是水!】【本文纯属娱乐】
  • 追风之龙

    追风之龙

    2020年,FIRA,也就是世界赛车协会举办了集新世纪最高科技于一体的ForumlaAdvanced格兰披治大奖赛,简称FA。FA在几年后就取代了F1成为了21世纪最高水平的赛车比赛。年轻的车手龙追云,作为升龙车队的主力车手,参加第20届FA大奖赛,为了达成父亲没有完成的梦想,以世界冠军为目标向世界一流的车手挑起了激战……
  • 魂尊古风

    魂尊古风

    虚实幻灭,彼此纠缠,何为真,何为假,猪脚一路向前,渴求超脱,却不知,藩篱之外,还是藩篱!只有当你愿意相信的时候,假才会是真,真才会是现实!
  • 嫂子威武

    嫂子威武

    我叫云非凡,25岁,是枚英俊潇傻的唱作型歌手。我有一个哥哥,云非白,27岁,也有一个从小一起长大的青梅竹马,陆李馨,25岁。云陆两家是邻居,所以我们三个从小一起长大,小时候也玩过过家家,新郎是我,新娘是陆李馨,大人们认为我和陆李馨长大了会成为一对,而我自己也这么认为,可她却成为我的嫂子,想知道为什么吗?请看正文!!
  • 不反着来就得病啊

    不反着来就得病啊

    陈厚是一个好人,他努力,他上进,他善良,他的内心满是阳光,他就是传说中什么都好的,别人家的孩子。直到某一天…他被一本书册砸晕昏厥…等他从昏厥中醒来之后,一切都变了,故事也从这里开始……在很多年很多年之后,已经老去的陈厚用这么一句话总结了自己的一生:“不反着来就得病啊!”这是一个老实人的故事,别怀疑,这真的是一个老实人的故事…
  • 四灾之极暗世界

    四灾之极暗世界

    听见了吗?深渊里传来了刺耳的讥笑。阴暗处有身影在低语,呢喃。风如困兽在四处冲撞。看见了吗?孤雁在寻找黎明的那一束光。我将要撕破这个虚伪的世界,斩破这个极暗的世界。既然无法化为光,那便坠入黑暗…
  • TFboys之穿越时空也爱你

    TFboys之穿越时空也爱你

    “兄弟!”“相公!”“凯哥哥!”撒子玩意?三位古代美女?我认识你们吗?----tfboys呜呜,忘了我们吗?--------蕊穿越过后,你还会爱我的,yesorno?本文纯属虚构,不符实际请别见怪!还有:本人文笔不是很好,不喜勿喷!谢谢!