登陆注册
7430400000019

第19章 把光辉与坚强带给世界(1)

如今,超薄大屏幕智能电脑、3D电视、智能手机已经走入千家万户,然而你知道屏幕的彩色显示需要的是什么材料吗?百货商场的金银、翡翠、玛瑙、宝石等各种雕刻饰品熠熠生辉,你知道何种工具可以将翡翠与玛瑙雕刻成各种漂亮的外形吗?用什么东西可以将它们打磨得晶莹透亮?当你夜间驾车在高速公路上,路两边荧光闪闪的标志线提醒你不至于偏离行车方向,你知道什么材料在车灯照射下会荧光闪闪吗?本章就此一一进行解密。

7.1液晶显示的魅力

液晶,顾名思义,就是一种像液体一样可以流动,又具有晶体结构特征的一类物质。早在1883年,奥地利植物学家赖尼铁兹发现,将安息香酸胆固醇酯固体慢慢加热至145.5℃时,固体熔化产生彩色混浊;继续加热至178.8℃时,彩色混浊消失,呈现透明液体状态;稍微冷却,混浊又出现,并有紫、橙红、绿等不同颜色变化。赖尼铁兹反复确定其发现后,向好友德国物理学家奥·莱曼请教,而当时奥·莱曼刚好制造了一架具有加热功能的偏光显微镜,于是就将安息香酸胆固醇酯置于该仪器之下进行观察,发现该物质在加热情况下能够形成一种具有偏光性质的液体,他起初将其称为“晶态流体”,后来他深信只有结构规则的结晶才具有偏光性质,于是将其改称“流动晶体”,最后改名为“液晶”。因此,赖尼铁兹和奥·莱曼后来被誉为液晶之父。

7.1.1生活中的液晶现象

我们外出游玩时,经常碰到小商贩将肥皂粉(或其他表面活性剂)溶解于水中,然后用一个塑料管蘸一些肥皂水,用嘴一吹会产生一些五颜六色的肥皂泡。实际上,这正是一种“溶致液晶”现象,因为,肥皂粉属于简单的脂肪酸盐,固态时,一定程度上,分子为定向排列,当将其溶解在溶剂中时,溶解作用破坏其规则排列而形成五颜六色的液晶现象。除脂肪酸盐外,一些离子型或非离子型表面活性剂都存在一定程度的溶致液晶现象。此外,雨后彩虹、人类眼球都存在液晶现象,因此,液晶不仅广泛存在于自然界与生物体中,还和生命息息相关,但这些液晶现象不能用于显示技术之中。

7把光辉与坚强带给世界物质不同液晶相示意物质特殊相态带给我们的惊讶众所周知,物质最常见的相态为气、液、固三种状态,例如,一般情况下,水为清澈透明的液体,冬天则可变成晶莹透亮的冰和美丽无瑕的雪花,而生活中又常常被加热变成水蒸气。其实,很多物质除了上述常见的三种相态之外,在特殊条件下还会出现两种常人不太注意的特殊相态,即等离子态(也叫电浆)与液晶相态。

等离子态是物质的离子化气体状态,它一般是在极端条件下才能够产生,例如,直流弧光放电、交流工频放电、高频感应放电、低气压放电和燃烧法均可产生等离子体。等离子体可以导电,可被巧妙设计的信号磁场捕捉、移动或加速,因而可以用于“等离子电视”制造等。此外,宇宙空间因为闪电或北极光也会产生等离子体,因而等离子态也广泛应用于能源、材料、信息、空间与地球物理等学科研究。

液晶相态则是一些特殊结构形状的物质分子,在一定温度下呈现可以流动的分子定向排列透明状态。这种透明状态具有动态干涉、散射、衍射、旋光、吸收和相变等一系列受电场调制的光学现象(又称“光电效应”)。例如,液晶物质遇到外加的直流电场信号后,分子排列就会被打乱,一部分液晶变得不透明,甚至呈现特殊颜色,因而能显示数字和图像,即液晶显示(liquidcrystaldisplay)。与等离子体相比,液晶显示驱动电压很低、功耗微小、可靠性增高、显示信息量加大、彩色显示无闪烁、对人体几乎无任何危害,而且成本低廉、易于自动化生产,还可制成各种类型和规格的显示器,便于携带。

7把光辉与坚强带给世界

7.1.3液晶分子及其应用用于液晶显示技术的液晶分子几乎全部来自人工合成,主要包括三大类:苯基环己烷液晶、联苯类液晶与酯类液晶。这类物质在低温下为晶体结构,当温度升到某一点(液晶点TM)时则变为液晶,温度继续升高则变为清亮的物质液体(清亮点TC)。液晶单分子都有各自的液晶点和清亮点,在中间温度则以液晶形态存在。用于液晶显示正是在液晶点和清亮点之间,由于这类物质在一定温度下出现液晶状态,因而,称为“热致液晶”。根据热致液晶的分子排列结构可将液晶分为三大类:近晶相、向列相和胆甾相。目前,各种形态液晶材料都用于液晶显示器的开发,例如,各种向列相液晶、双(多)稳态液晶、聚合物分散液晶、铁电液晶和反铁电液晶显示器等。其中,向列相液晶显示器开发最为成功,发展最快,市场占有率也最高,其主要应用领域包括计算器、家用电器、各类仪表表盘、游戏机、车载系统、电视、电脑、手机等。目前,日本、韩国、中国台湾在液晶显示技术方面处于世界领先地位。

7.1.4我国液晶显示行业现状

我国液晶材料研发工作始于20世纪70年代,但受到“文化大革命”以及工业液晶显示整体技术水平和资金限制,液晶技术一直未进入国家科技部的视线,经费不足和人才短缺大大限制了该行业发展。20世纪90年代,我国先后有数十家企业引进液晶显示生产线,以中国科学院长春光学精密机械与物理所、南京电子器体研究所、清华大学和深圳天马微电子股份有限公司为龙头的液晶显示技术研究开发工作才得以开展。经过二十多年努力,我国液晶材料从无到有,从小到大,已逐步形成了相当规模的产业,尤其是在全氟苯炔类液晶化合物合成方面取得一些突破性成就。目前,我国已经由20世纪完全依赖进口转化为部分出口,液晶材料年销售量达到300吨左右,发展较快,但在全球液晶材料市场中所占份额很小,仍然赶不上液晶显示发展的需要。同日、韩、美、德等液晶技术发达国家相比,我们在新材料研发方面差距很大,特别在薄膜晶体管显示(TFT)、超扭曲向列相液晶显示(STN-LCD)配套液晶材料的研发工作进展非常缓慢,使得我国在全球液晶显示行业缺乏竞争力。尤其是中高档品种(如STN-LCD材料),亟待增加科研开发力度。

7.2给点阳光就灿烂

夜间开车,特别是在没有路灯的高速公路上,你将如何判断方向?当遇到停电时,在十字路口指挥交通的警察如何让司机避让自己?马路清洁工人在夜间打扫马路时,又如何避免飞来的横祸呢?目前最好的办法就是穿上涂有荧光粉的服装,这些荧光粉遇到灯光照射时,就会反射出明亮的荧光,从而提醒司机朋友,及时避让交通警察或马路天使。那么荧光粉到底为何物?它为何能够反射荧光呢?

7.2.1荧光与荧光物质

在一定波长光线(通常为X射线或紫外线)照射下,有些物质会被激发而进入高能激发态,瞬间退激,并发出一种类似萤火虫夜间发光(通常波长比入射光波长更长),而且一旦停止照射,发光现象也随之消失,这就是荧光,又作“萤光”。具有这种性质的物质称为荧光物质,也叫荧光材料。确切地说,荧光是指在外界光照下,人眼见到的一些相当亮的有色光,如绿色光、橘黄色光、黄色光,也常称之为霓虹光。

绿色荧光及其应用荧光材料发射荧光的颜色与强度与材料本身结构有关。荧光材料可以由稀土金属氧化物、过渡金属(如锌、铬)硫化物与微量活性剂配合,经煅烧而成;也可以由一种或多种具有发色基团(如CC、CN或CO双键)的共轭体系化合物构成;还可以将稀土金属与有机小分子配位而成。前者为无机荧光材料,中间为有机荧光材料,后者为复合荧光材料。无机荧光材料一般为无色或浅白色,在紫外光(200~400纳米)照射下,依颜料中金属和活化剂种类、含量不同,而呈现出各种颜色可见光(400~800纳米),主要应用于交通标志牌与各种执照牌;相比之下,有机荧光材料与有机配合物种类更多,应用更广。例如,除用作染料、有机颜料外,还用作光氧化剂、荧光增白剂、涂料,用于太阳能捕集器、药物示踪、防伪标记、化学及生化分析、激光荧光探针等领域。

7.2.2荧光材料

(1)无机荧光材料

无机荧光材料是以金属硫化物(如ZnS、CaS)、铝酸盐(如SrAl2O4、CaAl2O4与BaAl2O4)等作为发光基质,以稀土镧系元素铕(Eu)、钐(Sm)、铒(Er)、钕(Nd)等作为激活剂和助激活剂。稀土离子具有丰富能级和4f电子跃迁特性,它们受到一定波长光线照射时,f轨道电子快速发生能级跃迁,又快速发生能级跳跃发出荧光。稀土发光荧光材料吸收能力强、转换率高、易于全色显示,且物理化学性质稳定。无机荧光材料多采用传统高温固相法制备,但随着技术更新,越来越多采用燃烧、溶胶-凝胶、水热沉淀以及微波等方法来合成。

(2)有机荧光材料

有机荧光材料具有可调性好、色纯度高、色彩丰富,且分子设计比较灵活。主要包括小分子与高分子发光材料。

(1)有机小分子发光材料主要指带有共轭杂环及各种生色基团的化合物,如唑、罗丹明、三唑、香豆素、1,8-萘酰亚胺、吡唑啉、卟啉、咔唑、噻唑、苝、吡嗪以及三苯胺等及其衍生物。一般通过引入苯环、烯键等来改变分子共轭长度,从而调节整个分子光电性质,最终达到应用目的。目前这类荧光材料已广泛应用于DNA诊断、光学电子器件、染料、荧光涂料、荧光增白剂、激光染料、光化学传感器以及电致发光器件(ELD)等方面。但是这类光材料易发生荧光猝灭,制成器件寿命较短。

(2)高分子发光材料是指单个大分子共轭体系或主链上通过非共轭相连的多个共轭体系(又叫发光中心),或者在高分子侧链上连接小分子发光基团等,如聚苯、聚噻吩、聚三苯基胺、聚咔唑、聚吡咯、聚卟啉及其衍生物等。

为满足全色显示发光要求,科学家们又将一些稀土金属与有机体结合制备出一系列光致发光的荧光材料。常见的稀土金属主要为镧系金属离子(如Sm3+、Eu3+、Tb3+、Dy3+和Eu2+、Ce3+及Yb2+等),而常见的有机体为β-二酮类化合物、羧酸类、超分子大环类(如多联吡啶)、冠醚、穴醚以及具有配位基的高分子化合物。

7.2.3荧光奥秘

任何物质分子中,外层电子自旋状态有两种:单重态与三重态。室温时,多数分子的电子处于基态最低振动能级,当物质分子吸收了与电子基态振动能级所具有的特征频率相一致的光子时,电子会由原来能级跃迁至第一电子激发态或第二电子激发态中各个不同振动能级,其后,大多数分子常迅速降落至第一电子激发态的最低振动能级,在这一过程中它们和周围的同类分子或其他分子撞击而消耗了能量,因而不发射光。

电子跃迁过程处在第一激发单重态的电子跃回基态各振动能级时,将产生荧光(10-7~10-9秒),在这一过程中除了荧光还有磷光,以及延迟荧光等。荧光是由激发单重态最低振动能层至基态各振动能级之间的跃迁产生的;而磷光是由激发三重态最低振动能级至基态各振动能级之间的跃迁产生的。

物质产生荧光必须具备两个条件:第一,该物质的分子必须具有能吸收激发光的结构,通常是共轭双键结构;第二,该物质分子必须具有一定程度的荧光效率(物质吸光后所发射的荧光量子数与吸收的激发光的量子数的比值)。

7.3钻石恒久远的奥秘

同类推荐
  • 智慧百科(科学卷)

    智慧百科(科学卷)

    本系列丛书一共为分9卷,分别主动物卷、奥运卷、航天卷、军事卷、植物卷、体育卷、历史卷、科学卷、人体卷。
  • 俞源:神奇的太极星象村

    俞源:神奇的太极星象村

    本书对俞源古村落的研究围绕着“村落人口、生产资料所有制、生产方式、集体经济、农户经济、典型人物和典型事件”等内容,以官修史书和先前研究成果为参照,系统梳理村落经济社会变迁的起点、历史线条、模型、规律和经验,研究当前村落经济社会发展面临的问题。本书首先对俞源古村落的历史沿革、布局结构和传统建筑活动进行考察,接着重点围绕古村落的土地制度、经济活动、组织制度和社会文化制度以及俞源古村落的价值、存在的问题和保护加以分析并对问题的求解。本书由周志雄、汪本学著。
  • 昨日重现:著名海难大揭秘

    昨日重现:著名海难大揭秘

    海难带给我们的,不只是灾难、伤痛。有人对生命漠视,也有人倾尽所有帮助遇难的人,这是人性的考验!还有更多的故事等待你的挖掘,古斯特洛夫号:是谁让万条生命葬身大海?阿波丸号:愚人节的“黑色杰作”?太平轮:六十多年未能愈合的伤口;渤海二号:行政问责第一大案;库尔斯克号:核泄漏即将发生的时候;威望号油轮:史上最大的海洋生态灾难;沙拉姆98号:红海少年创造生命奇迹。
  • 大视野知识文库(插图)走遍世界

    大视野知识文库(插图)走遍世界

    大视野知识文库包括:世界未解之谜、史前生命、浩渺的宇宙、人类的奥秘、走遍世界、奇妙的植物、奇妙的动物、华夏五千年、大海之旅、建筑奇观、消逝的文明、神奇的大自然、等书籍,历史、自然、宇宙等涵盖人文社科所有方面。
  • 数学教学的趣味题型设计

    数学教学的趣味题型设计

    《最新学校与教育系列丛书:数学教学的趣味题型设计》针对学生在学习数学中出现的问题,针对数学教学的趣味题型设计,有步骤、有梯度地引导学生学会从不同的角度去分析问题和解答题目,增强学生“举一反三”的意识,《最新学校与教育系列丛书:数学教学的趣味题型设计》激发学生学习数学的兴趣,增强学生学好数学的信心。
热门推荐
  • 徐志摩文集:扫荡着无际的青空

    徐志摩文集:扫荡着无际的青空

    本书收录了徐志摩经典力作,分为散文、书信和诗歌三部分。“散文篇”精选了《巴黎的鳞爪》、《我所知道的康桥》《天目山中笔记》等最具代表性的作品,“书信篇”精选了与陆小曼所写的信件,记录两人不为人熟知的情史。
  • 我就菜了怎么了

    我就菜了怎么了

    这是一个放弃科学追求武道的平行世界。读书已经得不到尊敬,唯有武功高强,才能成为人上人。
  • 《无尽魔神》

    《无尽魔神》

    浩瀚无边无荒大陆,万族林立,诸强并起,神魔共存。这里有着千古不绝的血脉,万年不灭的宗门!他,一个可怜的过客者,一个高等的宗门的二少爷,一个被退婚的男人!却是一个毫无元气的人,不能修炼的一个废人!一次偶然的巧遇-------一位神秘的师傅-------一个神秘的传承-------一个神秘的血脉-------成就了一个站在巅峰的男人他卑微而来,凭惊人的毅力,历经九死而涅槃,修混沌金身,诛仙灭神,高歌猛进,踏上神之彼岸巅峰!
  • 游侠之王

    游侠之王

    读书少年被未婚妻借修道之名杀死红尘大陆的守护巨龙用一颗珍贵的龙蛋将其复活从此段西楼开始漫漫的杀人之旅天与万物给人,人无一物给天,是人皆可杀尤其是那些大肆吸纳天地灵气,想要一步登天的修真者修真无德,长生可耻当武道再度崛起,持剑在手试问九天诸仙谁敢下凡?仙凡相隔,乱入凡间者死
  • 郯弢集

    郯弢集

    林奥高中三年,不成文的诗词。乱撒文墨,胡配音韵,本是拿不出台面,奈何满是回忆。
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 我在精灵世界种田

    我在精灵世界种田

    一个名为端木白的人,来到精灵世界。利用金手指,种田的故事。
  • 查理九世之乱世苍穹

    查理九世之乱世苍穹

    乱世窈窕,刀光剑影,转过镜头,战场人上头遍地,血流成河。黑渡鸦鸣叫的很悲惨,战场上只有一人存活,这个人的唐代白褂被鲜血染红了,他的脸庞异常俊俏,这
  • 不确定的开场白

    不确定的开场白

    一个美丽的女子如同蝴蝶一般飘零凋谢,周围的人都为其惋惜,想不通她怎么会自杀,而她确实也是它杀。
  • 如之草芥

    如之草芥

    白三,原名白一白,孤苦无依,生死关头,遇一明师,从此苦练技能。闯荡江湖之后,心狠手辣,爱恨情仇。为人族未来马革裹尸,为红颜知己叛天逆天,为兄弟两肋插刀