登陆注册
35184000000056

第56章 平行力系和重心

2.3平行力系和重心

2.3.1平行力系的简化与平行力系中心

设刚体上作用有平行力系Fi(i=1,2,…,n),作用点Ai相对O点的矢径分别为

ri(i=1,2,…,n),如图2.3.1所示。现考虑该力系的简化问题。各平行力Fi可以用

与各力平行的单位矢量e表示为Fi=Fie。该力系的主矢和关于O点的主矩分别为

图2.3.1平行力系与平行力系中心F′R=∑

n

i=1

Fi

?

è

=?∑

n

i=1

F

?

?

i÷e,

MO=∑

n

i=1

(ri×Fi)

?

è

=?∑

n

i=1

Fir

?

?

i÷×e(2.3.1)

若F′R=0,该平行力系简化为一力偶。现设F′R≠0,式(2.3.1)表明该力系向O

点简化的主矩与主矢垂直,可进一步简化为一力,从而表明该平行力系一定有合力,

且为

FR=∑

n

i=1

Fi=FRe(2.3.2)

其中

FR=∑

n

i=1

Fi(2.3.3)

为说明平行力系合力的作用点,需引入平行力系中心的概念。设该平行力系合

力的作用线为l0,如果保持平行力系中各力作用点和大小不变,而将作用线转过一个

角度φ,则新得到的平行力系的合力作用线l将与直线l0相交,交点称为该平行力系

的中心,记为C。下面计算平行力系中心的矢径rC。合力对O点的矩等于该力系对

O点的主矩,即

rC×FR=∑

n

i=1

(ri×Fi)(2.3.4)

将式(2.3.1)和式(2.3.2)代入上式,

?

è

?

得到

n

i=1

F

?

?

i÷rC×e

?

è

=?∑

n

i=1

Fir

?

?

i÷×e(2.3.5)

平行力系的中心要求是对任意的矢量e,

?

è

?

n

i=1

FirC-∑

n

i=1

Fir

?

?

i÷×e=0(2.3.6)

注意到不论e的方向如何变化,式(2.3.6)均成立,故由式(2.3.6)可导出

rC=

n

i=1

Firi

n

i=1

Fi

(2.3.7)

否则,若有两个不同的单位矢量e1和e2使得式(2.3.6)成立,而式(2.3.7)不成立,则

一定存在实数λ1和λ2,分别使得

n

i=1

Firi-rC∑

n

i=1

Fi=λ1e1(2.3.8)

n

i=1

Firi-rC∑

n

i=1

Fi=λ2e2(2.3.9)式(2.3.8)和式(2.3.9)相减得到

λ1e1-λ2e2=0(2.3.10)

因e1和e2是线性无关的,由式(2.3.10)知必有λ1=λ2=0,所以式(2.3.7)成立。需要

说明的是,论证中要有两个不同的单位矢量e1和e2是必需的,因为式(2.3.6)要求对

任意的e成立。

在实际计算中,经常采用直角坐标确定平行力系中心。在以O点为坐标原点的

直角坐标系中,平行力作用点Ai(i=1,2,…,n)的坐标为(xi,yi,zi),平行力系中心

的坐标为(xC,yC,zC),则式(2.3.7)可写作直角坐标的形式:

xC=

n

i=1

Fixi

n

i=1

Fi

,yC=

n

i=1

Fiyi

n

i=1

Fi

,zC=

n

i=1

Fizi

n

i=1

Fi

(2.3.11)

例2.3.1计算图示三角形分布力的合力。已知载荷集度q(x)的值在A点为

q0,在B点为零。

例2.3.1图

解对于图示x,载荷集度q(x)呈线性规律变化,

q(x)=

q0

l

(l-x)(a)

在x处的dx微段上的合力为dFR=q(x)dx。式(2.3.3)和式(2.3.7)可写作积分形

式,即

FR=∫

l

0

q(x)dx,xC=∫

l

0

q(x)xdx

l

0

q(x)dx

(b)

将式(a)代入式(b)后积分,求出此三角形分布力的合力大小和作用线位置分别为

F=

1

2

q0l,xC=

l

3

(c)

例2.3.1的结果表明,分布力的合力大小在数值上等于此力分布三角形的面积,

方向与载荷集度q的方向相同,作用线通过力分布三角形的形心。此结论具有普遍

性。以后可以据此计算一些矩形或梯形分布力的合力,而不必重复上述过程。2.3.2重心、质心和形心

物体受到的重力是一体积力,严格而论是汇交于地心的空间汇交力系。由于地

球半径巨大,可以认为汇交点在无穷远处,而将此体积力当作为平行力系。将连续的

物体离散化为有限个微元体,每个微元体的重量为ΔWi(i=1,2,…,n),其中任一点

pi在任意选定的直角坐标系中的坐标为(xi,yi,zi),按式(2.3.11),有

xC=

n

i=1

ΔWixi

W

,yC=

∑i

ΔWiyi

W

,zC=

n

i=1

ΔWizi

W

(2.3.12)

其中W=∑

n

i=1

ΔWi=∫W

dW为物体的总重量。这种由重力构成的平行力系的中心称

为重心。按式(2.3.12)计算重心的位置依赖于所划分的微元体ΔWi的体积大小和总

数n。体积越小总数越大,则重心位置越精确。令微元体的体积趋于零,而其总数趋于

无穷,式(2.3.12)可表达为三重积分

xC=∫VρgxdV

∫VρgdV

,yC=∫VρgydV

∫VρgdV

,zC=∫VρgzdV

∫VρgdV

(2.3.13)

式中,ρ为物体的密度,g为重力加速度,dV为体积微元。

对于均匀重力场,重力加速度为常数,从式(2.3.13)中约去g,导出物体质心的

计算公式

xC=∫VρxdV

∫VρdV

,yC=∫VρydV

∫VρdV

,zC=∫VρzdV

∫VρdV

(2.3.14)

它是物体的质量中心,即质心。

对于匀质物体,密度为常值,从式(2.3.14)中约去ρ,导出物体形心的计算公式

xC=∫V

xdV

V

,yC=∫V

ydV

V

,zC=∫V

zdV

V

(2.3.15)

它是物体的几何中心,式中V是物体的体积。由于定积分在其积分区域上具有可加

性,即如果积分区域V划分成彼此不相交的子集Vj(j=1,…,N),其形心分别为

(xj,yj,zj),因此,由

∫V

xdV=∫V1

xdV+…+∫VN

xdV(2.3.16)

和式(2.3.15),导出

xC=

N

i=1

xiVi

V

,yC=

N

i=1

yiVi

V

,zC=

N

i=1

ziVi

V

(2.3.17)这是组合体的形心计算公式,V和Vi也可以是2维的图形或1维的线段。用

式(2.3.17)计算形心的方法称为分割法。对于内部存在空洞的物体,仍可以按没有

空洞情形处理,只是空洞部分的体(面)积是负的,这种方法称为负体(面)积法。以下

例题说明这两种方法的应用。

例2.3.2木槌由一个长方体和一个圆截面的柄构成。已知:a=10cm,b=

8cm,c=18cm,d=3.5cm,l=40cm。求此木槌的重心坐标。

例2.3.2图

解木槌由长方体V1和圆柱体V2两个形状简单的物体组成。建立直角坐标系

如图所示。V1和V2的体积和重心坐标为

V1=abc=1440(cm3),(xC1,yC1,zC)

1=0,b

2

?,

è

?

?

?

V2=

π

4

d2l=384.8(cm3),(xC1,yC1,zC)

1=0,b+

l

2

?,

è

?

?

?

0÷(a)

由对称性知,重心一定在对称轴上,即xC=zC=0。只需计算yC。由式(2.3.17)得

yC=

yC1V1+yC2V2

V1+V2

=9.1(cm)(b)

例2.3.3一角钢的截面几何尺寸如图所示,求其形心坐标。

解用负面积法。为此,将角钢的截面看作是在边长为b×a的矩形A1中去掉

一个边长为(b-c)×(a-c)的小的矩形A2。A1和A2的面积和形心坐标为

A1=ab,(xC1,yC)

1=

a

2

?,b

è

?

?

?

÷

2

;

A2=-(a-c)(b-c),(xC2,yC)

2=

a+c

2

?,b+c

è

?

?

?

÷

2

(a)

由式(2.3.17)得

xC=

xC1A1+xC2A2

A1+A2

=

a2+bc-c2

2(a+b-c)

yC=

yC1A1+yC2A2

A1+A2

=

b2+ac-c2

2(a+b-c)

(b)

本题也可应用分割法计算。

例2.3.4试求中心角为π

2

、半径为R的均质扇形边界的重心位置。解均质扇形边界形成对称的图形,重心C在对称轴上。以对称轴为x轴建立

O-xy坐标系,则

yC=0(a)

OA和OB两直线段的重心横坐标为

x1=

R

2

cos

π

4

=

2

4

R(b)

圆弧段

︵AB的重心横坐标为

x2=∫

π

4

-

π

4

(Rcosθ)Rdθ

π

2

R

=

22

π

R(c)

按照式(2.3.17),此时V和Vi是1维的线段,得

xC=

π

2

22

π

R+2R×

2

4

R

π

2

R+2R

=

32

4+π

R(d)

均质扇形边界的重心坐标为32

4+π

R,

?

è

?

?

?

0÷。

本章要点和解题指导

1力系的两个基本特征量:主矢和主矩;力系的等效条件,主矢和主矩的不

变量。

2力系的简化

2.1力线平移,力线的简化及其最简形式。

2.2平行力系中心、重心、质心、形心的计算公式和基本关系。

2.3由简单形体或简单图形组成的组合形体或组合图形形心计算的分割法和负面积法。

3解题指导

(1)空间一般力系简化为力螺旋的条件是其主矢F′R和主矩MO不正交,即F′R·

MO≠0。简化为合力的条件是其非零主矢F′R和非零主矩MO正交,或主矩为零,即

F′R·MO=0。主矢为零时简化为力偶(主矩不为零)或平衡(主矩为零)。

(2)物体的形心位置要用坐标来表达,但与坐标系的选择无关。

(3)组合形体和组合图形的形心通常用分割法或负面积法计算。

扩展阅读建议

主矢和主矩相同为力系等效的充分必要条件可以由动力学分析证明。从矢量观

点和能量观点的证明分别可参阅[7]213-221页和[16]267-268页。

平行力系简化中心可以用坐标表示推导,参阅[15]24页,另一种采用矢量的直

接推导参阅[16]95-96页。

同类推荐
  • 凡道驭仙途

    凡道驭仙途

    本文以地球为起点。主人公孙牧林获得机缘步入仙道。以地球人的理念纵横仙的世界。以其在地球所学辅以仙道开悟。最终在空间,时间,规则上寻求凡与仙的大道之别,以凡道问天,不求长生为何成仙?不守凡道成仙为何?
  • 龙神战世纪

    龙神战世纪

    一拳星辰裂,一剑沧海枯。一狂天地覆,一怒鬼神诛。玄奇的神话文明,恒古的法术信仰,倾力打造另类神话。龙神战世纪,期待与你一起见证,不一样的阅读体验!
  • 禁血红莲后续

    禁血红莲后续

    因为喜欢禁血这本书,所以发个后续。希望大家喜欢
  • 嗜血龙神

    嗜血龙神

    一名奋战在游戏世界的青年,一次离奇古怪的穿越,一个种族林立的未知世界。永夜让世界陷入无尽黑暗,那就打出一条通往光明的道路。若命运之神扼住我生命之喉,也要奋战成为新世界的君王。
  • 诸天卡牌组

    诸天卡牌组

    卡组:【廉颇】+【黄盖】=挨打就能加速修炼卡组:【唐山葬】+【大威天龙法海】+【琦玉】=一拳秒了卡组:【秦始皇】+【亚历山大】+【亚瑟王】=王道之威卡组:【空虚公子】+【八哥】=时间管理卡组:【盖聂】+【无名】=残血无敌……宋文礼:为什么我要把十连的爆率设置的这么坑?
热门推荐
  • 美人拯救计划

    美人拯救计划

    神界界主意外灵魂散落,神界将本体送去历练,谁知竟带回一个大魔王。
  • 木铎诗集

    木铎诗集

    落木人间鹤,不过庭下客。长生非所愿,泣唱寻常歌。——木铎诗集
  • 异世之白衣剑神

    异世之白衣剑神

    一个处在21世纪,三流大学毕业刚刚的傅孤晨,面对求职困难的他在失落的从人才市场回到家途中偶然捡到一块神秘的玉佩,意外的而穿越到了异元大陆,从他的人生就此发生了意想不到的改变.....
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 妖灵家族

    妖灵家族

    神幻大陆,强者为尊,一家为龙还是为人。看少年如何打破桎梏,带领家族重返神龙世界。
  • 笑傲玄界

    笑傲玄界

    看少年林炎如何笑傲玄界。看林炎如何掌握天下权,看他如何笑对人生……“我欲封皇,谁奈我何……”
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 猎神之魔道小子

    猎神之魔道小子

    不嚣张,何以掌乾坤!不狂妄,何以撼鬼神!大罗诸天神器频频而起;旷古蛮荒异兽颤颤而出!妖魔横行,神鬼莫测;悠悠六界谁会是震古烁今之人?汝本无罪,奈何命运多舛!天道不公,势必逆天而行!【武者武从武师武魁武宗武王武尊武帝武圣武神】
  • 诡案侦探社

    诡案侦探社

    幕城里发生了许多诡异的案件,沈墨渊沈队长来说这一次是他第一次觉得这个世界没他想想的那么简单。
  • 王源的贴身小女仆

    王源的贴身小女仆

    她每天为他道早安晚安,为他收拾书包,为他准备好早餐午餐……(哇,女主好幸福)“干脆你直接来我家好了!”“好啊好啊!”这虽然是一个甜美的梦,可结局却是他又一次的伤害了她。